Three New Monoterpene Alkaloids and a New Caffeic Acid Ester from Incarvillea mairei var. multifoliolata

by Ai-Ting Xing, Jun-Mian Tian, Chun-Mei Liu, Hui-Liang Li, Wei-Dong Zhang, and Lei Shan*

Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Guohe Road 325, Shanghai, 200433, P. R. China (fax: +86-21-81871246; e-mail: vipshanlei@yahoo.com.cn)

Three new monoterpene alkaloids, mairine A (1), mairine B (2), and mairine C (3), and a new caffeic acid ester, 2-(1-hydroxy-4,4-dimethoxycyclohexyl)ethyl caffeate (4), were isolated from the EtOH extract of the whole plants of *Incarvillea mairei* var. *multifoliolata*. The structures of these compounds were established on the basis of 1D- and 2D-NMR and HR-ESI-MS analysis.

Introduction. – Incarvillea mairei var. multifoliolata C. Y. WU et W. C. YIN (Bignoniaceae) is mainly distributed in Yunnan and Sichuan provinces of China [1][2]. Previous phytochemical studies on *Incarvillea* species have afforded alkaloids and caffeic acid esters [3][4]. This species was found to be rich of actinidine-type monoterpene alkaloids especially, which possess significant antinociceptive activity [5-8]. Further chemical investigation for more bioactive constituents from this plant led to the isolation of three new monoterpene alkaloids, mairine A¹) (1), mairine B¹) (2), and mairine C¹) (3), and a new caffeic acid ester, 2-(1-hydroxy-4,4-dimethoxy-cyclohexyl)ethyl caffeate¹) (4) (*Fig. 1*). Herein, we describe the isolation and the structural elucidation of compounds 1-4 from *Incarvillea mairei* var. multifoliolata.

Fig. 1. Compounds 1-4 isolated from Incarvillea mairei var. multifoliolata

Results and Discussion. – Compound **1** was isolated as a yellow oil. The molecular formula was determined as $C_{11}H_{21}NO$ from the positive-ion-mode HR-ESI-MS (m/z 184.1667 ($[M + H]^+$)). Comparison of its ¹H- and ¹³C-NMR data (*Table 1*) with those of the known compounds δ -skytanthine and α -skytanthine (=(4*S*,4a*R*,7*S*,7a*R*)- and (4*R*,4a*R*,7*S*,7a*R*)-octahydro-2,4,7-trimethyl-1*H*-cyclopenta[*c*]pyridine, resp.) [9][10]

1) Arbitrary atom numbering; for systematic names, see Exper. Part.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

	1 ^a)		2 ^b)		3 ^a)	
	δ(H)	$\delta(C)$	δ(H)	$\delta(C)$	φ(H)	$\delta(C)$
CH ₂ (1)	$3.04 \ (dd, J = 12.0, 6.0),$	66.0	2.56 $(dd, J = 11.4, 6.0)$, 1.63 $(I = 11.4, 1.1)$	57.5	3.57 (dd, J = 11.4, 6.0), 2.07 (t I - 11.4)	71.6
$CH_{2}(3)$	2.91 (t, $J = 12.0$) 3.07 (t, $J = 12.0$), 2.04 (AA $T = 12.0$, 2.0)	67.3	2.49 (dd, J = 11.4) 2.49 (dd, J = 11.4, 3.0),	58.0	3.07 (t, J = 11.4) 3.38 (dd, J = 11.4, 4.2), 2.05 (t - 1 - 11.4)	72.1
CH(4)	2.68 - 2.75 (m)	27.2	1.00(t, 3 - 11.4) 2.04 - 2.10(m)	30.8	2.07 - 3.03 (m)	28.8
CH(5) or $C(5)$	2.19-2.24(m)	40.1	1.90 - 1.95 (m)	40.9	~	145.5
$CH_2(6)$ or $H-C(6)$	1.63 - 1.68 (m), $1.48 - 1.56$ (m)	22.9	1.43 - 1.49 (m)	22.0	5.52-5.53 (br. s)	127.1
$CH_2(7)$ or $H-C(7)$	2.01 - 2.07 (m), $1.21 - 1.27$ (m)	32.3	1.82 - 1.87 (m), $1.14 - 1.21$ (m)	25.9	$4.38 - 4.40 \ (m)$	84.4
CH(8)	1.73 - 1.76 (m)	36.9	1.69 - 1.72 (m)	45.1	1.64 - 1.68 (m)	48.3
CH(9)	2.32 - 2.36 (m)	43.7	2.04 - 2.10 (m)	41.3	2.83 - 2.87 (m)	47.0
Me(10)	0.95 (d, J = 6.6)	16.5	$0.84 \ (d, J = 7.2)$	17.5	1.15 (d, J = 6.6)	14.3
Me(11) or $CH_2(11)$	$1.04 \ (d, J = 7.2)$	22.8	3.36-3.42 (m)	66.5	$1.20 \ (d, J = 7.2)$	17.2
MeN	3.15(s)	60.7	2.21(s)	46.2	3.27(s)	60.5
^a) Measured in CD ₃ OI	D. ^b) Measured in CDCl ₃ .					

Table 1. ¹*H*- (600 MHz) and ¹³*C*-*NMR* (125 MHz) Data of $1-3^{1}$). δ in ppm, *J* in Hz.

suggested that 1 has the same constitution as skytanthine. The ¹H-NMR spectrum of 1 exhibited two Me d at $\delta(H)$ 0.95 (J=6.6 Hz) and 1.04 (J=7.2 Hz), indicating the presence of two Me–CH moieties, as well as a Me s at $\delta(H)$ 3.15. ¹³C-NMR and DEPT Spectra showed eleven C-atom signals, including three Me, four CH_2 (sp³), and four CH groups (sp^3) . These data implied that **1** is an *N*-methylated monoterpenoid alkaloid. From the DQF-COSY experiment, two fragments (a: C(3)-C(4)(Me)-C(5)-C(6)-C(6))C(7)-C(8)-Me; b: C(1)-C(9) could be established (Fig. 2). The key HMBCs H-C(5)/C(9), Me(11)/C(9), MeN/C(1), and MeN/C(3) suggested that **1** has the same skeleton as δ -skytanthine. In analogy to δ -skytanthine, Me (δ (H) 3.15 and δ (C) 60.7), $CH_2(1)$ ($\delta(H)$ 3.04 and 2.91 and $\delta(C)$ 66.0), and $CH_2(3)$ ($\delta(H)$ 3.07 and 2.94 and $\delta(C)$ 67.3) were ascribed to groups linked to an N-atom, although their signals were shifted downfield with respect to δ -skytanthine [9][10], due to the N-oxide moiety in **1**. The relative configuration of 1 was determined by NOESY correlations. The NOESY correlations H-C(5)/H-C(4), H-C(9), and Me(11), and H-C(9)/Me(11) indicated that H–C(5), H–C(9), and Me(11) are β -oriented, while Me(10) is on the opposite face of the molecule (Fig. 3). Thus, compound 1 was assigned the structure of δ skytanthine N-oxide, and named mairine A.

Fig. 2. Selected 2D-NMR correlations of 1-4

Compound **2** was obtained as a yellow oil. The molecular formula was also determined as $C_{11}H_{21}NO$ from the positive-ion-mode HR-ESI-MS (m/z 184.1675 ($[M + H]^+$)). Comparison of the ¹³C-NMR data of **2** (*Table 1*) with those of **1** revealed only a minor difference, namely a CH₂OH group in **2** instead of a Me group in **1**. The ¹H-NMR spectrum of **2** (*Table 1*) exhibited a Me d at $\delta(H)$ 0.84 (J = 7.2 Hz) and a Me s at $\delta(H)$ 2.21, indicating the presence of a Me–CH moiety and a MeN group. A CH₂ m at $\delta(H)$ 3.36–3.42 was ascribed to a CH₂OH group. ¹³C-NMR and DEPT Spectra showed eleven C-atom signals, including two Me, five CH₂ (sp³), and four CH groups (sp³). These data implied that **2** is a derivative of δ -skytanthine. The HMBCs between CH₂(11) ($\delta(H)$ 3.36–3.42) and C(7) ($\delta(C)$ 25.9), C(8) ($\delta(C)$ 45.1), and C(9) ($\delta(C)$

Fig. 3. Key NOESY correlations of 1-3

41.3) implied that **2** had the constitution of a δ -skytanthin-11-ol (*Fig.* 2). This was confirmed by extensive 2D-NMR experiments, including DQF-COSY, HSQC, and HMBC (*Fig.* 2). The relative configuration of **2** was determined by the NOESY correlations H-C(5)/H-C(4), H-C(5)/H-C(9), H-C(5)/CH₂(11), and H-C(9)/CH₂(11) (*Fig.* 3). Thus, compound **2** was deduced as δ -skytanthin-11-ol, and named mairine B.

Compound **3** was obtained as a yellow oil. The molecular formula was determined as $C_{11}H_{19}NO_2$ from the positive-ion-mode HR-ESI-MS $(m/z \ 198.1496 \ ([M+H]^+))$. Comparison of the ¹H- and ¹³C-NMR data of 3 (Table 1) with those of 5,6didehydroskytanthine [11] suggested that 3 has a similar molecular skeleton as the latter. The ¹H-NMR spectrum of **3** exhibited an olefinic H-atom at $\delta(H)$ 5.52–5.53 (br. s) and two Me d at $\delta(H)$ 1.15 (J = 6.6 Hz) and 1.20 (J = 7.2 Hz), indicating the presence of two Me–CH moieties, as well as a Me s at $\delta(H)$ 3.27. ¹³C-NMR and DEPT Spectra showed eleven C-atom signals, including three Me, two CH₂ (sp³), one CH (sp²), and three CH groups (sp³), and a quaternary C-atom (sp²). These data implied that **3** is the olefinic derivative of a known monoterpenoid alkaloid. Compared to 1, the downfield chemical shifts of CH₂(1) (δ (H) 3.57 (*dd*, *J* = 11.4, 6.0 Hz) and 3.07 (*t*, *J* = 11.4 Hz) and δ (C) 71.6), CH₂(3) (δ (H) 3.38 (dd, J = 11.4, 4.2 Hz) and 3.05 (t, J = 11.4 Hz) and δ (C) 72.1), and a Me (δ (H) 3.27 (s)) implied the presence of an N-oxide. The CH at δ (H) 4.38–4.40 (m) and $\delta(C)$ 84.4 suggested that a OH group was attached to C(7). This inference was confirmed by the HMBCs MeN/C(1) and C(3), and H-C(7)/C(5), C(6), and C(11). The suggested constitution of 3 (5,6-didehydro-7-hydroxyskytanthine Noxide) was confirmed by extensive 2D-NMR experiments, including DQF-COSY, HSQC, and HMBC (Fig. 2). The relative configuration of 3 was determined by the NOESY correlations H-C(4)/H-C(9), H-C(7)/H-C(9), and H-C(9)/Me(11)(Fig. 3). Thus, compound **3** was deduced as (7α) -5,6-didehydro- δ -skytanthin-7-ol Noxide, and named mairine C.

Compound **4** was isolated as a yellow oil. The molecular formula was determined as $C_{19}H_{26}O_7$ from the negative-ion-mode HR-ESI-MS (m/z 365.1576 ($[M - H]^-$)). Comparison of the ¹H- and ¹³C-NMR data of **4** (*Table 2*) with those of (+)-2-(1-hydroxy-4-oxocyclohexyl)ethyl caffeate [4] suggested that **4** is a derivative of cyclohexylethyl caffeate (caffeic acid = (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid). From the 1D-NMR spectra, two MeO and six CH₂ groups (sp³), two sp³ quaternary C-

atoms, five sp² CH groups, and four sp² quaternary C-atoms were deduced. Among them, five sp² CH (δ (H) 7.02 and δ (C) 115.1, δ (H) 6.77 and δ (C) 116.5, δ (H) 6.93 and δ (C) 122.9, δ (H) 7.52 and δ (C) 146.8, and δ (H) 6.23 and δ (C) 115.2), and four sp² quaternary C-atoms (δ (C) 127.7, 146.8, 149.6, and 169.3) were ascribed to those of a caffeoyl moiety. The six sp³ CH₂ (δ (H) 1.54–1.63 and δ (C) 34.8, δ (H) 1.72–1.79 and δ (C) 29.0, δ (H) 1.72–1.79 and δ (C) 29.0, δ (H) 1.54–1.63 and δ (C) 34.8, δ (H) 1.85 (t, J=6.6 Hz) and δ (C) 41.9, and δ (H) 4.32 (t, J=6.6 Hz) and δ (C) 61.9), two sp³ quaternary C-atoms (δ (C) 70.6 and 101.2), and two MeO (δ (H) 3.18 and 3.15 (2s) and δ (C) 47.9 and 48.0) suggested the presence of a 2-(1-hydroxy-4,4-dimethoxycyclohexyl)ethyl moiety. The above deductions were further confirmed by extensive 2D-NMR experiments, including DQF-COSY, HSQC, and HMBC (*Fig.* 2). The HMBC CH₂(8) (δ (H) 4.32)/C(9') (δ (C) 169.3) implied that **4** was 2-(1-hydroxy-4,4-dimethoxycyclohexyl)ethyl caffeate.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
C(1)		70.6	C(1')		127.7
$CH_{2}(2)$	1.54 - 1.63 (m)	34.8	CH(2')	7.02 (d, J = 1.8)	115.1
$CH_2(3)$	1.72 - 1.79(m)	29.0	C(3')		146.8
C(4)		101.2	C(4')		149.6
$CH_{2}(5)$	1.72 - 1.79(m)	29.0	CH(5')	6.77 (d, J = 7.8)	116.5
$CH_2(6)$	1.54 - 1.63 (m)	34.8	CH(6')	6.93 (dd, J = 7.8, 1.8)	122.9
$CH_2(7)$	1.85(t, J = 6.6)	41.9	CH(7')	7.52 (d, J = 15.6)	146.8
$CH_2(8)$	4.32(t, J = 6.6)	61.9	CH(8')	6.23 (d, J = 15.6)	115.2
MeO-C(4)	3.18(s)	47.9	C(9')		169.3
MeO-C(4)	3.15 (s)	48.0			

Table 2. ¹H- and ¹³C-NMR (600 and 125 MHz, resp., CD₃OD) Data of 4¹). δ in ppm, J in Hz.

The work was supported by the *Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)*, the *NCET Foundation*, *NSFC* (30725045), the *National '863' Program* (2006AA02Z338), the *China Postdoctoral Science Foundation* (20070410711), the '973' *Program of China* (2007CB507400), the *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai China* (07DZ19728, 06DZ19717, 06DZ19005).

Experimental Part

General. TLC: $HSGF_{254}$ silica gel plates (SiO₂; 10–40 µm, Yantai Chemical Industrial Institute, P. R. China); detection by means of a UV (254, 365 nm) lamp and *Dragendroff* spray reagent. Column chromatography (CC): SiO₂ (200–300 mesh; Yantai Chemical Industrial Institute, P. R. China), SiO₂ H (10–40 µm, Qingdao Haiyang Chemical Group Corporation, P. R. China), and Sephadex LH-20 (Pharmacia Co., Ltd.). Optical rotations: Perkin-Elmer-341 polarimeter. IR Spectra: Bruker Vector 22 instrument; $\tilde{\nu}$ in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker-Avance-II-600 spectrometer; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS: Varian-MAT-212 mass spectrometer; in m/z (rel. %). HR-MS: Q-Tof-micro-YA019 mass spectrometer; in m/z (rel. %).

Plant Material. The whole plants of *I. mairei* var. *multifoliolata* were collected in Yunnan Province, P. R. China, in August 2007, and identified by Prof. *Han-Chen Zheng.* A voucher specimen (No. 20070801) was deposited with the Herbarium of the School of Pharmacy, Second Military Medical University.

Extraction and Isolation. The air-dried whole plants (21 kg) of *I. mairei* var. *multifoliolata* were powered and extracted with 80% EtOH three times under reflux. After evaporation of the EtOH, the extract was partitioned between CHCl₃ and 0.001N HCl. The aq. soln. was adjusted to pH 11 with 20% NaOH soln., followed by exhaustive extraction with petroleum ether, AcOEt, and BuOH. CHCl₃-Soluble materials were separated by CC (SiO₂, petroleum ether/AcOEt 10:1 \rightarrow 1:1, then CHCl₃/MeOH 10:1 \rightarrow 0:1): *Fractions T1 – T9. Fr. T5* was subjected to CC (*MCI* column, 90% \rightarrow 100% aq. MeOH), in which a fraction that eluted with 90% MeOH was repeatedly purified by CC (SiO₂ and *Sephadex LH-20*): **1** (12 mg), **2** (150 mg), and **3** (27 mg). The AcOEt extract was subjected to CC (SiO₂ (200–300 mesh), petroleum ether/AcOEt 30:0, 30:1, 20:1, 10:1, 5:1, 2:1, and 0:1): *Frs. E1–E7. Fr. E4* was purified repeatedly by CC (SiO₂ and *Sephadex LH-20*): **4** (5 mg).

Mairine A (= rel-(4R,4aS,7R,7aS)-*Octahydro-2,4,7-trimethyl-1*H-*cyclopenta*[*c*]*pyridine 2-Oxide*; **1**): Yellow oil. $[a]_{D}^{23} = -12$ (*c* = 0.71, MeOH). IR (KBr): 3384, 2955, 2875, 1697, 1455, 1389. ¹H- and ¹³C-NMR: *Table* 1. ESI-MS: 184.2 ($[M + H]^+$), 206.1 ($[M + Na]^+$). TOF-ESI-MS (pos.): 184.1667 ($[M + H]^+$, $C_{11}H_{22}NO^+$; calc. 184.1696).

Mairine B (= rel-(4R,4aS,7R,7aR)-Octahydro-2,4-dimethyl-1H-cyclopenta[c]pyridine-7-methanol; **2**): Yellow oil. $[\alpha]_{23}^{25} = -5$ (c = 0.81, MeOH). IR (KBr): 3332, 2950, 2872, 2793, 1506, 1463, 1388. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS: 184.3 ($[M + H]^+$), 206.2 ($[M + Na]^+$). TOF-ESI-MS (pos.): 184.1675 ($[M + H]^+$, $C_{11}H_{22}NO^+$; calc. 184.1696).

Mairine C (= rel-(4R,6R,7S,7aS)-2,3,4,6,7,7a-Hexahydro-2,4,7-trimethyl-1H-cyclopenta[c]pyridin-6ol 2-Oxide; **3**): Yellow oil. $[\alpha]_{D}^{23} = +21$ (c = 0.75, MeOH). IR (KBr): 3420, 2959, 2929, 2873, 1457, 1418, 1048. ¹H- and ¹³C-NMR: *Table 1*. ESI-MS: 198.1 ($[M + H]^+$), 220.1 ($[M + Na]^+$). TOF-ESI-MS (pos.): 198.1496 ($[M + H]^+$, C₁₁H₂₀NO⁺₂; calc. 198.1489).

2-(1-Hydroxy-4,4-dimethoxycyclohexyl)ethyl Caffeate (=2-(1-Hydroxy-4,4-dimethoxycyclohexyl)ethyl (2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoate; **4**): Yellow oil. $[a]_{D}^{25} = -16$ (c = 0.57, MeOH). IR (KBr): 3503, 3421, 2956, 2924, 2853, 1653, 1384, 1271, 1176, 1116. ¹H- and ¹³C-NMR: *Table 2*. HR-ESI-MS: 350.4 ($[M + H]^+$), 372.3 ($[M + Na]^+$). TOF-ESI-MS (neg.): 365.1576 ($[M - H]^-$, $C_{19}H_{25}O_7^-$; calc. 365.1606).

REFERENCES

- [1] W. C. Wang, 'Flora of China', Science Press, Beijing, 1990, Vol. 69, p. 46.
- [2] K. Xu, Y. L. Liu, H. Hu, J. Yunnan Agric. Univ. 2005, 20, 559.
- [3] Y.-Q. Su, Y.-H. Shen, S. Lin, J. Tang, J.-M. Tian, X.-H. Liu, W.-D. Zhang, *Helv. Chim. Acta.* 2009, 92, 165.
- [4] Y. Q. Su, W. D. Zhang, C. Zhang, Y. H. Liu, Y. H. Shen, Chin. Chem. Lett. 2008, 19, 829.
- [5] M. Nakamura, Y.-M. Chi, J. Kinjo, W.-M. Yan, T. Nohara, Phytochemistry 1999, 51, 595.
- [6] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1997, 46, 763.
- [7] Y. M. Chi, M. Nakamura, X. Y. Zhao, T. Yoshizawa, W. M. Yan, F. Hashimoto, T. Nohara, S. Sakurada, Nat. Prod. Res. Dev. (Chinese) 2005, 17, 362.
- [8] T. F. Ji, X. Z. Fen, Chin. Tradit. Herb. Drugs 2002, 33, 967.
- [9] K. Homberger, M. Hesse, Helv. Chim. Acta 1984, 67, 237.
- [10] K. Kaneda, T. Honda, *Tetrahedron* 2008, 64, 11589.
- [11] D. Gross, W. Berg, H. R. Schutte, Phytochemistry 1973, 12, 201.

Received July 29, 2009